A numerical method with a control parameter for integro-differential delay equations with state-dependent bounds via generalized Mott polynomial

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A numerical method for solving delay-fractional differential and integro-differential equations

‎This article develops a direct method for solving numerically‎ ‎multi delay-fractional differential and integro-differential equations‎. ‎A Galerkin method based on Legendre polynomials is implemented for solving‎ ‎linear and nonlinear of equations‎. ‎The main characteristic behind this approach is that it reduces such problems to those of‎ ‎solving a system of algebraic equations‎. ‎A conver...

متن کامل

On fractional integro-differential equations with state-dependent delay

In this article, we deal with the existence of mild solutions for a class of fractional integro-differential equations with state-dependent delay. Our results are based on the technique of measures of noncompactness and Darbo’s fixed point theorem. An example is provided to illustrate the main result. AMS Subject Classifications: 26A33, 34A08, 34A37, 34G20, 34G25, 34H05, 34K09, 34K30.

متن کامل

Numerical Solution of Integro-Differential Equations with Local Polynomial Regression

In this paper, we try to find numerical solution of               b  d , . a y x p x y x g x K x t y t t y a a x b a t b              d , . , a y x p x y x g x K x t y t t y a a x b a t b                   d x t y t t y a      a or               x  by using Local polynomial regression (LPR) method. The numerical solution shows th...

متن کامل

A Parameter Uniform Numerical Scheme for Singularly Perturbed Differential-difference Equations with Mixed Shifts

In this paper, we consider a second-order singularly perturbed differential-difference equations with mixed delay and advance parameters. At first, we approximate the model problem by an upwind finite difference scheme on a Shishkin mesh. We know that the upwind scheme is stable and its solution is oscillation free, but it gives lower order of accuracy. So, to increase the convergence, we propo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Sciences

سال: 2019

ISSN: 2008-1359,2251-7456

DOI: 10.1007/s40096-019-00314-8